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Motivation
• The work was initialy focused on integrating the National 

Forest Inventories (NFIs) and Forest Management 
Inventories (FMIs)
– Task 2.3.3 of the EU project ‘’DIABOLO’’

• The information needs for operational and tactical forest
management and planning cannot be fully supported by
the NFIs (Kangas et al 2018)
– Information that can improve the end-product value not 

produced by the NFIs
– The NFIs estimates for the initial state of the forest

management units (stands) or at higher management (domains) 
level not very accurate

Kangas et al (2018). Remote sensing and forest inventories in Nordic countries – roadmap for the future. Scandinavian Journal of Forest
Research, 33:4, 397-412, DOI: 10.1080/02827581.2017.1416666



Background
• Although the stand-level predictions methods supported by 

remotely sensed data is a model-dependent inferential approach, 
FMIs still rely heavily on probability sampling for acquiring the field 
information
– The use of probability sampling guarantees the (approximate) design-

unbiasedness at enterprise-level, but the prediction error at 
management unit is unknown

• In the current parlance, a forest stand can be consider as a ‘’small-
area’’ receiving a very small (most often zero) sample size 

• With the raise of the “big data” applications in forestry, it is 
expected to witness an abundant flow of data that may or may not 
provide an appropriate basis for statistical inference for small-areas.



Background
• From a statistical point of view, the “big data” can be seen as a 

nonprobability sample

• For instance, ‘’big data’’ can be a database containing field and auxiliary 
information provided by different sources
– Data streams are also possible to consider

• The observations in a such database could be related to:
– individual tree information acquired by harvesters, from which “pseudo-plots” 

can be created by aggregating the tree measurements based on relative or 
absolute positions 

– the observations could also consist of field observations (plots) provided by 
other inventories (even by the NFI) 

• It is also assumed that some kind of auxiliary information related to the 
individual trees or to the entire field plot is also available. 



Inference for nonprobability 
sampling

• Two general approaches (Baker at al 2013, Elliott & Valliant 2017): 
– The quasi-randomization approach  
– The superpopulation model approach

• The quasi-randomization assigns so-called “pseudo-inclusion probabilities” to the 
nonprobability sample data, 
– The classical estimators  for unequal probability sample (like the Horvitz-Thompson 

estimator) can be used 
– Despite the cosmetic resemblance to the inference for probability sampling, the quasi-

randomization approach does not guarantee the design-unbiasedness, being in fact a 
model-dependent inferential approach. 

– Does not allow for unit-level (spatial) predictions 

• The superpopulation model approach assumes the existence of a common data 
generating process common to the population of interest and to the observations 
(or at least for some) in the non-probability sample. 
– Unit-level (spatial) predictions possible 

Baker R, Brick MJ, Battaglia M, Couper MP, Dever JA, Gile KJ et al (2013). Report of the AAPOR Task Force on Non-probability Sampling. 
Technical report, American Association for Public Opinion Research, Deerfield, IL.

Elliott MR & Valliant R (2017). Inference for nonprobability sampling. Statistical Science, 32(2), 249-264



Inference for nonprobability 
sampling

• These two main approaches can be further combined in a 
double-robust (DR) estimation procedure (Kang & Schafer 
2007 and references therein) 

• DR estimation assumes the existence of two models:
– A probability model ( -model)
– A response model ( -model)
– Several ways of sing the synergies between the - and -models 

are described by Kang & Schafer (2007) 

• The minimum requirements for DR: 
– the existence of a common, consistent set of auxiliaries in the 

non-probability sample and population of interest 

Kang DY & Schafer JL (2007). Demystifying double-robustness: a comparison of alternative strategies for estimating a population mean 
from incomplete data. Statistical Science, 22(4), 523-539.



The -models

• The -models are probability models
– Predict the probability that a sample observation i could 

belong to the population of interest (the small-area in the 
current parlance)
• The sample data can be probabilistic or not

• The specification of the -model requires:
– A binary (0-1) response vector

• ௜=1 for the small-area observations
• ௜= 0 for the sample observations 

– A set of auxiliaries common for a particular small-area 
and for the sample



The -models
• Define the response probability for a unit i as:

– ௜ - propensity score (Rosenbaum & Rubin 1983)
• propensity score - the probability that a unit with certain 

characteristics will be assigned to the treatment group, i.e., the 
probability of an observation in group label as 0 to belong to group 
labeled as 1

– The functional form for predicting ௜ is called as the π-model
• examples: binomial GLM models

• The predicted propensity scores should be close to 1 for 
the sample observations that share common traits (given 
the auxiliaries) with the small-area units  

Rosenbaum PR & Rubin DB (1983). The central role of the propensity score in observational studies for causal effects. 
Biometrika, 70, 41–55.



The -models

• Links the field attributes to auxiliaries 

• The functional form of the -model could be, f. 
instance:

௜ ௜ ௜ ௜ with ௜

• In the simplest case, the coefficients of can be 
estimated by ordinary least squares

• Nonprametric formulation for possible, such as 
nearest neighbor imputations



DR estimation for small areas

• Double-robust (DR) procedures integrate both 
the -models and the -models  
– The double-robustness is based on the assumption 

that at least one of the model is appropriate

• If both the -models and the -models are 
wrong, then there is no gain in using DR

• Either way, we will never know the model biases
– The curse of the model-dependent inference



DR estimation for small areas
• Under the common FMIs, most of the forest stands will not 

receive sampling points
– This makes the case for the model-dependent inference via a 

synthetic estimator trained on data which is external to the 
small-area 

• Relative to the forest stand, the sampling design for 
acquiring the sample data is not relevant anymore
– if the sampling is non-informative

• The DR approach allows for the -models to be tailored to 
each particular small-area via the propensity scores 
predicted by the -models



Analyses

• The analysis workflow can be summarized as 
follows: 
– generate large training (TRAIN) and validation (VAL) 

datasets using the empirical observations from field 
plot inventories and corresponding plot-level ALS 
auxiliaries;

– create grouping structures within the validation 
datasets, as proxies for real forest stands;

– estimate the group means using probability and 
nonprobability samples



Material

• The artificial datasets were created from emirical
data from 2016, consisting of:
– A field sample of 137 field plots from a local Forest

Management Inventory in Fribourg canton, 
Switzerland

– ALS data (GPD ~ 5 points m2)
• The usual hight percentiles and density features were

extracted from the point cloud data

– Very good temporal match between ALS and
terrestrial data



Field data

Development 
stage

No. field 
plots

Standing volume (mc ha-1)

Min Max Mean SD(ଵ) CV%
(ଶ)

1 25 2.00 99.40 42.48 31.47 74.08
2 12 11.00 233.00 71.48 62.48 87.41
3 5 46.67 137.80 103.13 37.61 36.47
4 22 43.90 184.00 121.18 42.67 35.21
5 32 30.18 290.41 142.89 55.35 38.73
6 24 15.60 308.40 131.43 65.26 49.65
Other 17 0.00 196.80 27.45 64.32 42.68
Overall 137 0.00 308.40 97.04 68.76 70.85

(1) Standard deviation; (2) Coefficient of variation (%)

Table 1. Summary of Fribourg field sample data: 



Artificial datasets
• The terrestrial data and the corresponding ALS features were used to 

create large three artificial datasets of 100,000 observations each
– A training dataset (TRAIN)
– Two validation datasets (VAL.1 and VAL.2)

• The artificial datasets were generated by copula functions, using the R 
packages “CDVine” (Brechmann et al 2013) and “VineCopulas” 
(Schepsmeier et al 2017).

• The TRAIN dataset plays the role of an external database of plot-level field 
inventory data and ALS auxiliaries, and it can be seen as a very large non-
probability sample relative to VAL.1 and VAL.2 

Brechmann E C & Schepsmeier U (2013). Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine. Journal of Statistical 
Software, 52 (3), 1-27. http://www.jstatsoft.org/v52/i03/

Schepsmeier U, Stoeber J, Brechmann EC, Graeler B, Nagler T & Erhardt T (2017). VineCopula: Statistical  Inference of Vine Copulas. R package 
version 2.1.3. (URL  https://CRAN.R-project.org/package=VineCopula)



Create the grouping structures for the 
validation datasets 

• For each validation dataset, several grouping structures 
were generated using 25% of the observations:
– hierarchical clustering using Ward’s method on the Euclidean 

and Canberra distances
– cut-off to 150 groups

• The rest of 75% of the observations in the validation 
datasets were assigned to one of these groups by nearest-
neighbor imputations

• The groups with less than 25 observations were merged
– for field plots of 400 m2, a group of 25 observations would 

correspond to forest stand of approximately 1.0 ha. 



Grouping by Canberra distance

Grouping by Euclidean distance

Grouping structure for VAL.1 population Grouping structure for VAL.2 population

Grouping by Canberra distance

Grouping by Euclidean distance



Population Grouped by No. Groups Median group size

VAL.1

Euclidean 
distance 148 547

Canberra 
distance 150 473

VAL.2

Euclidean 
distance 148 568

Canberra 
distance 148 438

Table 2. Realized number of groups and median group size for artificial populations:



Estimation strategies

• Probabilistic models ( -models)
– The propensity scores were predicted by two 

types of estimators:
• a parametric model formulated as generalized linear 

model for binary responses (GLM) 
– Feature selection and model fitting using the “speedglm” R 

package (Enea 2017)

• Support Vector Machines (SVM) implemented in the 
“kernlab” R package  (Karatzoglou et al 2004), using a
Gaussian kernel with automatic tuning of the kernel 
coefficients 

Enea M (2017). speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets. R package version 0.3-2.  (URL  https://CRAN.R-
project.org/package=speedglm)

Karatzoglou A, Smola A, Hornik K, Zeileis A (2004). kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software 11(9),
1-20. URL http://www.jstatsoft.org/v11/i09/



Estimation strategies

• Response models ( -models):
– Linear regression models estimated by OSL and 

WLS; 
– Linear regression models estimated by the Least 

Absolute Shrinkage and Selection Operator 
(LASSO, Tibshirani 1996) using the “glmnet” R 
package (Friednam et al 2010);

– Nearest-neighbor imputations (k=1)  performed 
using the “FNN” R package (Beygelzimer et al 
2013).

Beygelzimer A, Kakadet S, Langford J, Arya S, Mount D & Li S (2013). FNN: Fast Nearest  Neighbor Search Algorithms and Applications. R 
package version 1.1.(URL  https://CRAN.R-project.org/package=FNN)
Friedman J, Hastie T & Tibshirani R (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical 

Software, 33(1), 1-22. URL http://www.jstatsoft.org/v33/i01/.
Tibshirani R (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, 58(1), 267-288.



Estimators

• Under the superpopulation model approach
– Synthetic linear regression estimators 

• OLS regression  (REG)
• Lasso regression (LAS)

– Double robust (DR) estimation:
• Linear regression with residual bias correction, using the 

propensity weights as pseudo-inclusion probabilities to adjust the 
predictions of from OLS regression (REG.c) and LASSO (LAS.c)

• Propensity weighted regression estimation (REG.w), using the 
propensity weights as precision weights for weighted least square 
(WLS) fitting 



Estimation strategies

• Under quasi-randomization approach
– propensity weighting of the responses in the sample 

data (PW)

• In addition:
– Nearest neighbour (NN) imputations using the 

Euclidean distance
– Weighted nearest neighbour (NN.w) imputations using 

the Euclidean distance weighted by the propensity 
scores of a -model 



Estimation strategies

• The inference to VAL.1 and VAL.2 was addressed 
considering the following case studies: 
– using TRAIN as an external database (large non-

probability sample)
• In order to obtain a balanced dataset for the -model, 

SRSwoR samples of size equal the median size of the small-
areas were selected from TRAIN  

• Note that more data do not compensate for model bias
• The samples should be large enough for NN imputations

– using probability samples of size n=50 observations 
selected by SRSwoR from VAL.1 and VAL.2



Case studies

Model-dependent inference for:

Nonprobability samples Probability samples

𝜋-model
Similarity method for clustering

𝜋-model
Similarity method for clustering

Euclidean Canberra Euclidean Canberra

SVM VAL.1,2 VAL.1,2 SVM VAL.1,2 VAL.1,2

GLM VAL.1,2 VAL.1,2 GLM VAL.1,2 VAL.1,2

• The robustness of the estimators was assessed by running simulation trials 
• The factors considered 

- Grouping structure: two similarity measures for hierarchical clustering
- Euclidean and Canberra distances

- Two formulations for the 𝜋-model 
- Binomial logistic regression (GLM)
- Support Vector Machines (SVM)  

Table 3. Overview of the case studies:



Results

• Inference for nonprobabilty samples

– Using the TRAIN dataset to predict on VAL.1 and 
VAL.2

– Sample size equal to median group size, by 
grouping for each population populations (from 
Table 2)



SVM 𝝅-model

GLM 𝝅-model

VAL.1 population, external data, grouping by Euclidean distance



SVM 𝝅-model

GLM 𝝅-model

VAL.2 population, external data, grouping by Euclidean distance



SVM 𝝅-model

GLM 𝝅-model

VAL.1 population, external data, grouping by Canberra distance



SVM 𝝅-model

GLM 𝝅-model

VAL.2 population, external data, grouping by Canberra distance



Results

• Inference for probability samples

– Estimators trained on current inventory data
• SRSwoR sampling from the VAL.1 and VAL.2 for model-

dependent small-area inference
• Sample size: 40 observations



SVM 𝝅-model

GLM 𝝅-model

VAL.1 population, external data, grouping by Euclidean distance



SVM 𝝅-model

GLM 𝝅-model

VAL.2 population, external data, grouping by Euclidean distance



SVM 𝝅-model

GLM 𝝅-model

VAL.1 population, external data, grouping by Canberra distance



SVM 𝝅-model

GLM 𝝅-model

VAL.2 population, external data, grouping by Canberra distance



Conclusions

• The double-robust approach reduces the group-level 
prediction errors for synthetic regression estimator: 
– Adjustments using the fitted residuals
– Using the propensity scoreas as precision weights for

WLS fitting

• In general, the quality of the -models seems to
dominate the results

• NN methods worked very well only for the case of
probability samples, and showed little sensitivity to the
propensity weighting



Conclusions
• Propensity score weighting works quite well for probability samples

– Approx. 30-60% reduction in RMSE compared to the default synthetic
estimator (i.e., ‘’classical’’ ALS inventory)

– Binomial GLMs tend to be biased for unbalanced datastes (due to
small terrestrial sample) 

– SVM more robust to unbalanced dataste

• For nonprobability samples, the prediction errors are higher (as
expected), but the weighting still provide slight improvements
– The -models formulated as GLMs perform better, the datasets are

well balanced
– SVM not good for extrapolation



Challenges
• Investigate possible diagnostics for the risk of -models failure

• Assess combinations of probability and nonprobability samples
– The workflow for the DR approach does not change

• Use a database of ‘pseudo-plots’ or a set of working models?
– Accuracy vs. feasibility trade-offs

• How to use incorporate the propensity weighting in the NN 
imputations

• Since estimating the propensities weights does not reuqire spatial
information (like plot coordinates), would we get easier access to
the NFI plot information?



Challenges

• How to report the stand-level accuracy

– Reporting the prediction errors of the synthetic estimator 
does not capture the lack-of fit with regard to model bias

– It is exected to have low model errors, but large prediction
errors
• The nominal coverage of the prediction intervals will be too

narrow

• What is the effect of using DR estimation for decision-
making?


