StanForD2010

John Arlinger

Structure

- Standardization & StanForD2010
- New possibilities! On-going projects
- Trends....where are we heading?

Supplying data

We want to plan and control for maximum value and minumum costs!

A number of standards....

Plan and control for maximum value and minumum costs!

Instructions

Forwarding object instruction (foi)

- Object identities
- Landing (location)

Forwarding delivery instruction (fdi)

• Productgroups per mill

Object geographical instruction (ogi)

- Map layers (photo, shp-files)
- Presentation of map layers

Object instruction (oin)

- Object identities
- Logging company
- Forest owner etc
- Products

Species group instruction (spi)

- Definition of species-groups
- DBH height
- Identiteties
- Bark function

Product instruction (pin)

- Identities
- Lengths/Diameters
- Qualities
- Price matrix
- Distribution matrix

Reporting production

Forwarded production (fpr)

• Products at specific landing?

• When unanana?

Harvested production (hpr)

Per harvested log:

- Product
- Length
- Diameter
- Stem no

Per harvested stem:

- Stem no
- Species
- GPS-position
- Time of harvesting

Operational monitoring

Operational monitoring data (mom)

Time, operator, object registered indivudally for:

- Processing
- Terrain travel
- Break
- Repaire
- Maintenance
- Travel to work
- Planning etc.

Measuring quality control

Forwarding quality control (hqc)

- Known reference mass
- Scale control mass
- Calibration

Harvesting quality control (hqc)

- Log lengths
- Log diameters
- Measured by:
 - Harvester
 - Operator
 - Auditor

The major building blocks

- XML
- Basic/measured data registered in machine
 - Calculations avoided in machine
- Globally unique ids.
- Plenty of coordinates.
- Optional time stamps.

New possibilities!

- Large detailed datasets from normal work situations
- Combining machine datasets
- All bucking control settings reported
- Flexible adjustment of harvester production
- Combining manual field data, ALS, saw mill measuring and harvester data

Large dataset from normal work situations

On-going project: New model for paying contractors

Combining hpr and hqc data

- On-going project: Improved analytical tools for improved measuring
- Effect on measuring accuracy?
 - Pressure settings
 - Manual opening of knives
 - Speed of feeding
 - Reversing
- Parameters registered in hpr.
- Measuring accuracy from hqc

All bucking control settings are reported

- E.g. bark, butt end extrapolation, cutting window,
 - Instructions created correctly?
 - Implementations correct?
 - Modifications done by operator?

Flexible adjustment of harvester production

Trends...where are we heading?

Globalization:

- Back to basics
 - volumes
 - bark functions
- Extending
 - E.g. tree-length operations

New detailed machine data:

- Tracking
- Stem-codes
- User-defined-data
- Crane angle and extens
- Forwarding quality con

New use of machine gis-applications:

- Monitoring thinnings
- Route optimization
- Product quality parameters
- Operators updating forest databases

Plenty of fun stuff to do until 2036-08-15!

