

The potential and use principles of harvester production data as forest resource information

Tapio Räsänen Metsäteho Oy

NB-NORD workshop on Big data from forest machines

June 19-20 2018 Ås, Norway

Targets for extensive utilization of harvester data

- The objective in Finland is to utilize the existing information of harvesting and other forestry operations in keeping up the public forest resource information
 - Forest data provided by Finnish Forest Centre is open and free for everyone from March 1, 2018
 - laser-scanning based data (16 m x 16 m), will cover whole country by 2020
 - stand-based data from all over the country
 - Information about the cut areas can be achieved either from
 - 1. harvester production data: delineated stands and strip roads
 - 2. satellite images (Sentinel 2): interpretation of vegetation changes
 - Other potential data sources are the declarations of the performed operations and self-control systems of forest work
 - silviculture operations
- Estimation systems for stock properties of new harvesting sites
 - planning of wood supply operations in forest companies
 - electronic wood market
 - planning and simulation services of cross-cutting
- Wood value assessment
 - based on combining harvester data, measurement data of the sawmills (X-ray) and laser scanning data (ALS)

Basis and state-of-art of data production (1)

- Data is produced as a "by-product" of harvesting operations so in principle it is free of cost
 - data ownership and rights to use the data has been agreed in Finland
- Quality of data is generally good enough
 - control and follow-up of wood measurement guarantees it
 - tree coordinates are integrated to production data on condition that advanced GNSS location systems are applied
 - still quite a lot of improvement actions need to be done
- New data production methods are being studied and developed for practical purposes
 - near mapping methods (TLS, MLS) for control of thinning density and mapping of standing trees after the cutting
 - self-control systems of harvesting work quality based on e.g. image analysis
- Stem-specific data offers possibilities to analyse tree and stock properties afterwards
 - wood quality at general level based on log cutting points
 - e.g. root rot infected areas

Basis and state-of-art of data production (2)

- StanForD 2010 is in implementation phase in the forest companies
 - production data will be more accurate due to stem and log-specific registering of measurement
 - both StanForD 2010 and StanForD Classic will be supported by machine manufacturers over the change period
 - WoodForce service will be taken in full use gradually by several forest companies
 - management of hpr files is done in the service
- Utilization concepts have been developed and promoted actively in the forest digitalization spear head projects funded by both Ministry of agriculture and forestry and forest industry
 - harvester data warehouses (stem banks) and supporting methods
 - methods to estimate stock properties of a harvesting object based on harvester big data
 - use of harvester data in updating of forest resources
 - data processing methods
 - Forest Data Platform in pilot phase
 - to combine different forest data sources

Potential use areas and applications of harvester data

Data model of the harvester database in Metsäteho

Cross cutting simulation

Input data from users' systems

- from different sources and methods
- given by harvesting objects

Object attributes

- location
- logging form

Stock and tree attributes by tree species - G, D, N, H, age

Stem count distributions by tree species - D, H (mean)

Sawmill X-ray measurement data in value based classification of harvesting objects

Dependencies between stand properties and log quality attributes measured at millgate by X-ray utilizing Big Data methods

=> Grounds for value based precise control of wood flow and use of raw material

Wood quality data repositories

- · base information
- object borders (GIS)

Transport information

- truck load information
- · loads can be combined from different roadside storages (different harvesting objects)

Harvester's stm/hpr –files (StanForD)

- aggregated stock attributes per harvesting object and tree species
- e.g. saw log percent

- features
- tree properties

log scanner and X-ray

Collecting harvester data into a common or company-specific data warehouse

The positioning accuracy of trees based on measured harvester location and crane position

- The objective was to examine and improve the tree-wise positioning accuracy from harvester measurements.
- The data was collected from eight sampling plots from Evo research site, Finland, in co-operation with uni. Helsinki (A. Saukkola master thesis), HAMK polytechnic school, Komatsu Forest Ltd, Metsäteho and its shareholders.
 - Field measurements of individual tree locations with high-accuracy GPS (N = 633)
 - Harvester measurements
- The harvester was Komatsu 931.1, MaxiExplorer operating system
- Data included parameters from HPR file:
 - raw location and bearing of harvester, harvester head (cabin) direction w.r.t. the machine and length of the boom.
- Using raw harvester data:
 - average distance of harvester tree: ~ 7.9m
 - average distance of harvester head tree: ~ 6.6m → only ~ 1.2m improvement and still poor level of accuracy
- → Metsäteho developed a computational algorithm to improve the position of the harvester head w.r.t. the measured tree locations
 - the algorithm averages the harvester locations and filters the bearings of harvester.

The positioning accuracy using algorithm

Mid-strip road observations		Positioning accuracy, m		Improvement, m		
	Harvester – reference (A)	Harvester head - reference (B)	Algorithm – reference (C)	Boom position (A-B)	Algorithm (B-C)	Improved position (A-C)
Boom extension used (n_plots = 6)	8,24	6,41	5,04	1,83	1,37	3,19
Boom extension not used (n_plots = 2)	7,13	6,80	4,15	0,33	2,65	2,98

- The algorithm improves the positioning accuracy of Komatsu Forest's harvester head by over 1,7m
- The best achieved level of positioning accuracy within sampling plots was 3.6m.
- The average level of accuracy within the whole dataset was 4.9m. (raw data 7.9m)
- The sampling plots were rather small in size when compared to typical harvested stands
 - relatively more beginnings and endings of the strip roads → lower positioning accuracy.

Boom position

Improved position

