Mathematical Optimization of Harvesting and Transportation Processes in Steep Terrain and Big Data

Leo Bont, WSL, Switzerland NB Nord Workshop 19. / 20. June 2018

Content

- Harvesting Layout in Steep Terrain
- Road Upgrading
- Potential of Having Big Data available

Optimize Harvesting Layout in Steep Terrain

Decisions:

- Harvesting system
- Cable road section
- Landing

Objectives: Minimize...

- Harvesting Cost
- Environmental Impact (Stand Damages)

Constraint:

Harvest each Parcel

Multi objective optimization

Cost Environmental Impact

$$Z^{overall} = \lambda_C Z^C + \lambda_{EI} Z^{EI}$$

weight λ_X

objective function (standardized)

 \mathbf{C} cost

environmental impact EI

example.:

$$\lambda_C = 1$$

$$\lambda_{EI} = 0$$

$$\lambda_C + \lambda_{EI} = 1$$

Objective: Cost

Minimize wood extraction cost [CHF]

Environmental Impact: Penalty for angle between skyline and slope line

Optimization technique

Chosen Solution

ROAD UPGRADING

Problem – spatial explicit model

Road standard

Model Components

Decisions

General Problems

- Productivity models are usually created to answer very specific research questions.
- Geometry of existing roads not described accurately
- Volume prediction

Benefit of «Big Data»

- Algorithms are working well, however, quality of the results is just as good as the quality of the input datas
- Here, better Inputs would be a benefit:
 - Volume prediction
 - Road Upgrade Cost Estimation
 - Productivity models, in particular for unfavorable conditions

Thank you

Harvesting system

Harvesting Alternative / Dummy Exit

New Road Geological Layer Road Cost Engineering design parameters For 170+w/2 170+w/2 1:1

Maintenance

Flat Cost

Hauling Paths & Costs

Design Standard [t]	Hauling Cost [CHF/m3/km]
18	1.28
28	0.8
40	0.54

Design Standard [t]

		10	20	40
Path	r1	1.9	1.2	0.8
	r2	2.6	1.6	1.1
	r3	1.3	0.8	0.5
	r4	1.5	1	0.6

Potential route paths from road segment #5 to exit Existing road segment

Main road