

Use of big data in animal production and animal breeding

Karoline Bakke Wethal 18.06.2018

Keynote speaker: «big data from forest machines»

My background

- Ph.D student at Norwegian University of Life Sciences (NMBU)
- Animal breeding and genetics
- Part of the AMS—project :

New approaches for management and breeding of dairy cows in automatic milking systems

Short introduction to animal breeding

- Purpose of breeding program: improve desirable traits
 → genetic gain
- For ex: more milk, better health, stronger legs, more meat
- Traits needs to be heritable + genetic variation between individuals must exist.

How to improve traits?

Need phenotypic and pedigree information to select the best animals

Short introduction to animal breeding

Two main sources of data on animals

1. Phenotype

2. Genotype

Use of big data in pig breeding

CT scan of more than 25 000 boars since 2008

Feeding stations with weight:

Use of big data in pig breeding: Genotyping

- Fast emerging field/big data in animal breeding
- Genotyping: Information about an individuals DNA/genes
- Genomic relationship: more accurate relationship

between animals

Use of big data in pig breeding: Genomic Information

Genotyping started in 2012

60 000 known "positions" on the DNA for one animal

Dairy cattle breeding

- Geno: breeding company
- Norwegian Red dairy cattle (NR)
- Breeding for economic important traits: data on health and fertility since 1970
- Health and fertility less controlled by genes,
- → data quality essential

Use of big data in dairy cattle breeding

- Potential breeding candidates genotyped as calf
- Number of genotyped NR individuals = 40 000 :
 (50 000 DNA-positions/sites for each animal)

 Combine phenotypic and genomic data > faster genetic improvement

Big data from genotyping:

- In all livestock species:
- ↑ No of genotyped animals
- ↑ Information about DNA positions (more details of DNA)
 Low density → high density → sequence data
- → Genotyping of animals at birth will be routine

Sensor Technology and big data in Dairy Production

Different types of sensors:

- 3D camera for body condition
- Feeding stations and scale
- Sensor measuring rumination

Activity tags

Sensor technology in Dairy production - AMS

- **AMS** = automatic milking system
- > **1800** AMS in Norway
- More than 42 % of the milk from cows in AMS
- Reasons for popularity:
 herd size and high labor
 costs
- Cows voluntary milked:
 65 cows per day

Associated sensors in AMS

Sensors connected to AMS, in-line measurements milk:

Online somatic cell count (OCC)

 Milk samples with information on feeding status and fertility.

- **Progesteron** hormone → pregnancy
- **ß-Hydroxybutyrate** (BHB) in milk → ketosis

Future:

- Measure methane from each cow
- FTIR (infrared spectroscopy): milk composition

AMS project - genetic analysis of data from AMS

- Data from 77 Norwegian AMS farms
- → Genetic analysis of cows milkability and behavior
- More than 5 million records/visit from 5 000 cows.
- Milk yield (kg), milking speed (kg/min), occupation time (min), number of milkings, kick offs.

Results:

- These records are explaining cows milkability and behavior in
 AMS → genetic component → heritable
- AMS-data = objective and continuous

Big data in dairy cattle breeding Status:

- Still a way to go:
- Data from AMS and other sensors → not yet available in the genetic evaluation
- Loose data every day
- Need of a system for automatically uploading this data
- Important to start using AMS data in breeding!

Future potential – real time data in herd management

 Future potential in use of real time data from different sensors to predict disease of a cow

 Often little signs in the beginning before production drops

Combine different sources of information into algorithms

Conclusion

- Big data used today in animal breeding
- Sensor data useful for breeding → objective and repeated measurements
- Future breeding program will include more and more information from big data

Thank you for your attention!

